ON THE INVESTIGATION OF SUMMABLE
SERIES *

Leonhard Euler

§19 If the sum of the series whose terms contain the variable quantity x
was known and which will therefore be a function of x, then, whatever value
is attributed to x, one will always be able to assign the sum of the series.
Therefore, if one puts x + dx instead of x, the sum of the resulting series will
be equal to the sum of the first and the differential: Therefore, it follows that
the differential of the sum will be = the differential of the series. Because this
way so the sum as the single terms will be multiplied by dx, if one divides
by dx everywhere, one will have a new series, whose sum will be known. In
like manner, if this series is differentiated again and it is divided by dx, a new
series will result together with its sum and this way new equally summable
series will be found from one summable series involving the undetermined
quantity x, if that series is differentiated several times.

§20 In order to understand all this better, let the undetermined geometric
progression be propounded, whose sum is known, it is

1
m:1—|—x—|—x2+x3+x4+x5+x6+etc.

If this equation is now differentiated with respect to x, it will be

*Original title: “ De Investigatione serierum summabilium”, first published as part of the
book , Institutiones calculi differentialis cum eius usu in analysi finitorum ac doctrina serierum,
1755”, reprinted in in ,Opera Omnia: Series 1, Volume 10, pp. 235 - 255 “, Enestrom-Number
E212, translated by: Alexander Aycock for the , Euler-Kreis Mainz”



d
(1_xx)2 = dx + 2xdx + 3x%dx + 4x3dx + 5x*dx + etc.

and having divided by dx one will have

1
(1P

If one differentiates again and divides by dx, this equation will result

=14 2x 4 3x? + 4x3 + 5x* + etc.

2
(ESE =2+2-3x+3-4x* +4-5x° +5- 62" +etc,

or

1
——— = 143x 4 6x* + 10x° + 15x* + 21x° + etc.
(1—x)°
where the coefficients are the triangular numbers. If one differentiates further
and divides by 3dx, one will obtain
1 2 3 4

——— = 1 +4x + 10x° 4 20x” + 35x~ + etc.,

(1—x)*
whose coefficients are the first pyramidal numbers. And, by proceeding further
this way, the same series result, which are known to result from the expansion
of the fraction ﬁ
§21 This investigation will extend even further, if, before the differentiation
is done, the series and the sum are multiplied by a certain power of x or even
a function of x. So, because it is

1% T+x+x2+x° +x* +x° +etc.,
multiply by x™ everywhere and it will be

xm

] — XM + xm+1 + xm+2 + xm—|—3 4 xm+4 = etc.
— X

Now differentiate this series and having divided the result by dx it will be

mx™ 1 — (m —1)x™
=y

= mx™ 4 (m A1) x™ + (m42)x" T 4 (m 4 3) 2™ 4 ete.



Now divide by ™1 one will have

m—(m—-1x m X
(1—x)2 _1—x+(1—x)2

=m+ (m+1)x + (m+2)x% + etc.

Before another differentiation is done multiply this equation by x" that it is

mx" P
Ty
Now, do the differentiation and having divided by dx it will be

> =mx" + (m+ 1)x" 4 (m +2)x" 2 + etc.

mnx"1 n (m+4+n+1)x" . 2x"H1
1—x (1—x)? (1—x)3

=mnx"' 4+ (m4+1)(n+1)x" + (m +2)(n +2)x" ! +etc.

But having divided by x"~! it will be

mn  (m+n+1)x 2xx
T—x (1—x)? +(1—x)3

mn + (m+1)(n+1)x + (m +2)(n +2)x* + etc.

and it will be possible to proceed further this way; but one will always find
the same series which result from the expansions of the fractions constituting
the sum.

§22 Since the sum of the geometric progression assumed at first can be
assigned up to any given term, this way also series consisting of finite a
number of terms will be summed. Because it is

1— xn+1
T T+x+x2+2°+x4 4+ 2,
after the differentiation and having divided by dx it will be

1 (n+1)x" — nx"+1
(1-x)?% (1—x)?

=14+2x+32+4x3 + - +nx" L.

Hence, the sum of the powers of natural numbers up to a certain term can be
found. For, multiply this series by x that it is



x — (n+1)x" 4 a2
(1-x)?
which, having differentiated it again and divided it by dx, will give

= x 422 4+3x3+ - +nx",

T+x— (n+1)x" + (2nn +2n — 1)x" 1 — nnx*+2
(1—x)°

this equation multiplied by x will give

= 14+4x+9x2+- -+ n>x"L;

x+x2— (n+1)2x" + (2nn 4 2n — 1)x" 2 — nnx" 3
-y

which equality, if it is differentiated, divided by dx and multiplied by x, will
produce this series

= x+4x>+ 93+ 022",

x + 8x% +27x3 + - - - + n2x",

whose sum can therefore be found. And from this in like manner it is possible
to find the indefinite sum of the fourth powers and higher powers.

§23 Therefore, this method can be applied to all series which contain an
undetermined quantity and whose sum is known, of course. Because except
for geometric series all recurring series enjoy the same prerogatives that they
can be summed not only up to infinity but also to any given term, one will be
able to also find innumerable other summable series from these by the same
method. Because a lot of work would be necessary, if we wanted to study this
in more detail, let us consider only one single case.

Let this series be propounded

_
1—x—xx
which equation, if it is differentiated and divided by dx, will give

= x+ 2%+ 263+ 3x* +5x° 4+ 8x° + 13x” + etc.,

1
(1_;:_3‘;)2 — 14 2x + 622 + 12%° + 25x* + 48x5 + 9110 + etc.

But it easily becomes clear that all series resulting this way will also be
recurring whose sums can even be found from their nature itself.



§24 Therefore, in general, if the sum of a certain series contained in this form

ax + bx* + cx® 4 dx* + etc.
was known, which sum we want to put = S, one will be able to find the
sum of the same series, if the single terms are each multiplied by terms of an
arithmetic progression. For, let
S = ax + bx? + cx® 4+ dx* + ex® + etc,;
multiply by x™; it will be

Sa™ = ax™ 4 b2 4 o™ 4 dx™H 1 ete;

differentiate this equation and divide by dx

as
mSx™ 1 4 o= (m ax™ + (m + 2)bx" ! + (m 4 3)cx"*? + etc,;

divide by x"~! and it will be

xds
dx
Therefore, if one wants to find the sum of the following series

mS + = (m+ 1)ax + (m +2)bx® + (m + 3)cx® + etc.

wax + (& + B)bx* 4 (a4 2B8)cx® + (a4 38)dx* + etc.,

multiply the above series by g and put mp + B = a thatitis M = % and the
sum of this series will be

BxdS
dx

=(a—pB)S+

§25 One will also be able to find the sum of this propounded series, if its
single terms are each multiplied by terms of series of second order, whose
second differences are just constant, of course. For, because we already found

mS + Jijj = (m+1)ax + (m +2)bx* + (m + 3)cx® + etc.,

multiply this equation by x" that it is



; x4 ) nio
mSx" + Fa (m+1)ax"" 4+ (m 4 2)bx""* + etc,;

differentiate this equation having put dx to be constant and divide by dx

(m+n+1)x"S N x"*1dds
dx dx?
= (m+1)(n+1)ax" + (m+2)(n +2)bx" " + etc.

mnSx" 1 +

Divide by x"~! and multiply by k that it is

(m+n+1)kxdS N kx?ddD
dx dx?

= (m+1)(n + Dkax + (m +2)(n + 2)kbx* + (m + 3) (n + 3)kcx” + etc.

mnkS +

Now, compare this series to that one; it will be

Diff. I Diff. I

kmn + 1km + lkn + 1k = «
km + kn + 3k = B

knm + 2km + 2kn + 4k =« + 1B 2k =«
km + kn + 5k = B + 7

Inm + 3km + 3kn + 9%k = a + 2B + 7

Therefore, k = %’y and m+n = % —3and

k

Hence, the sum of the series in question will be

(B—)xdS n vx2ddS
dx 2dx?

(a —B+7)S+

§26 In like manner, one will be able to find the sum of this series

Aa + Bbx + Ccx? + Ddx® + Eex* + etc.,

if the sum S of this series was known, of course,



S =a+bx+cx®+dx® +dx® +ex* + fx° +etc.
and A, B, C, D etc. constitute a series which is reduced to constant differences.
For, since it its form is concluded from the preceding, assume this sum
BxdS n vx2ddS — Ax3d®S n extd*S
dx 2dx2 6dx3 24dx*
Now, to find the letters «, 3, v, 6 etc., expand the single series and it will be

aS + + etc.

aS = wa + abx + acx® + wadx® + wex* + etc.

as
ﬁ;cx =+ Bbx + 2Bcx? + 3Bdx> + 4Pex* + etc.
2dd
7; deS = + yex? + 3ydx® + 6yext + etc.
3.3
(5636;;5 = +  odx3 + 4dex* + etc.
ex*d*s A
W = + eex® + etc.

etc.

compare this series, having arranged it according to the powers of x, to the
propounded one

7 = Aa + Bbx + Ccx? 4+ Ddx® + Eex* + etc.

and having made the comparison of the single terms we find

=B-A
—26—a=C—-2B+A
—3y—-38—-a=D—-3C+3B—-A

etc.

QR

> = ™ ®
I
O 0O W »

Having found these values the sum in question will therefore be



(B—A)xdS (C—2B+ A)x2ddS (D —3C+3B— A)x*d’S

Z=AS+——+ 1-2dx2 + 1-2-3dx3

or if the differences of the series A, B, C, D, E etc. are indicated in the
customary manner, it will be
Z—AS—}—AA'de +A2A-x2d25 L A3A - x3d3S et
- 1dx 1-2dx2 1.2-3dx3 ' °C

if it was, as we assumed,

=a+bx+cx? +dx +ex* + fx° + etc.

Therefore, if the series A, B, C, D etc. has finally constant differences, one will
be able to express the sum of the series Z in finite terms.

§27 Since having taken e for the number whose hyperbolic logarithm is = 1
it is
x? x3 x4 x°

X
x:l — tc.;
¢ it 123 1232412345 &

assume this series for the first, and because it is S = ¢*, it will be Z—i = ¢%,

% = e* etc. Therefore, the sum of this series which is composed of that one

and this one A, B, C, D etc.

A+%+sz+ D’ + Ex’ + etc
1 1-2 1-2-3 1-2-3-4 '

will be expressed this way

e (as xAA N xxA2A N x*A3A N x*AtA et
1 1.2 '1.2.3 1.2.3.4 °°)
So, if this series is propounded
5x  10x? 17x2 26x* 37x°
2+ —+ + etc.,

1 1-2+1-2-3+1-2-3-4+1-2-3-4-5
because of the series

AI B/ C/ D; E etc.

+etc
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A = 2, 5, 10, 17, 26 etc.
AA = 3, 5, 7, 9 etc.
AAA = 2, 2, 2 etc.

the sum of this series

24+5x+ + + + etc.
will be

=e"(2+3x+xx) =e"(1+x)(2+x),

which is immediately clear. For, it is

Zex:2+2—x+ﬁ+2—x3+2—x£}+etc
1 2 6 24

3xe* = + 3x + % + S—XZ + E + etc
1 2 6
x3 x*

xxe* = + xx + T + > + etc.

and in total

1 17x3  24x4
e*(1+3x+xx) =2+ 5x + 02xx+ 6x + zz + etc.

§28 The things treated up to now not only concern infinite series, but also
sums of a finite number of terms; for, the coefficients 4, b, ¢, d etc. can either
proceed to infinity or can be terminated at any arbitrary point. But because this
does not require any further explanation, let us consider in more detail what
follows from the things mentioned up to now. Therefore, having propounded
any arbitrary series, whose single terms consist of two factors, the one group
of which terms constitutes a series leading to constant differences, one will be
able to assign the sum of this series, as long as having omitted these factors

the sum was summable. Of course, if this series is propounded

7 = Aa + Bbx + Ccx* + Ddx® + Eex* + etc.



in which the quantities A, B, C, D, E etc. constitute a series of such a kind
which is finally reduced to constant differences, then one will be able to exhibit
the sum of this series, if the sum S of the following series is known

S = a+ bx + cx® 4 dx® + ex* + etc.

For, having calculated the continued differences of the progression A, B, C, D,
E etc., as we showed at the beginning of this book,

A, B, C, D, E, F, etc.
AA  AB, AC, AD, AE et
A’A  A’B, A’C, A’D etc
APA  AB, AC, etc
A*A  A*B,  etc
ASA etc.

etc.

the sum of the propounded series will be

2
diAA+ x-ddS

313
Z=SA+2 AA L FES A e

1d 1-2dx? 1-2-3dx3
after having put dx to be constant in the higher powers of S.

§29 Therefore, if the series A, B, C, D etc. never leads to constant differences,
the sum of the series Z will be expressed by means of a new infinite series
which will converge more than the propounded one, and so this series will
be transformed into another one equal to it. To illustrate this let this series be

propounded

2 3 4 5 6
—y Yy Yy
Y=y+5 + 5+ g+ tete,

which is known to express In ﬁ such that itis Y = —In(1 — y). Divide the
series by y and put y = x and Y = yZ that it is

Z = —;ln(l —y) = —%11’1(1 —x);

10



it will be

7145480 0P
T T2t I T s e T

which compared to this one

1
S:1+x+x2+x3+x4+x5+x6+etc.:ﬁ

will give these values for the series A, B, C, D, E etc.

’ 2’ 3’ 4’ 5 '
1-27 2.3 3.4’ 4.5 ’
1-2 1-2 1-2 ot
1-2-3 2.3-47 3-4-5 '
123 123 e
1-2-3-47 2:3-4.5 '

etc.

Therefore, it will be

1
A=1, AM=-2, ANA=-
! 2’ 3’ 4
Further, because itis S = ﬁ, it will be

s 1 dds 1 &S 1

dr  (1—x)2" 1-2dx2 (1—=x)3 1-2:3dx3 (1—x)*

Having substituted these values this sum will result

etc.

1 X n x? _ x3 n x* ete
S 1-x 2(1—-x)2 3(1—x)3 4(1—-x)* 5(1—x)° '

Therefore, because itis x = y and Y = —In(1 — y) = yZ, it will be

zZ

2 3 4
P A vy
S e T ) A T T e I

which series obviously expresses In (1 - %) = In ﬁ = —In(1 —y), the

validity of which is even clear considering the results demonstrated before.

11



§30 In order to also see the use, if only odd powers occur and the signs
alternate, let this series be propounded

7 9 11
y_ vy .y _ v
5 7—1—9 11 + etc.,

from which it is known that it is Y = arctany.

3 5
Y:y—‘%—k

Divide this series by y and put % = Z and yy = x; it will be

xx x> xt 5
— — =4+ = — — +tetc

X
Z_1_*+5 7 "9 11

3
If it is compared to this one

S=1—x+xx—x>+x*— 2% +etc,

it will be S = —- and the series of coefficients A, B, C, D etc. will become

etc.

etc.

T+x
1 1 1
Lo 2 ¥ 2 ¥ 2 "
e = 2-4 3 2-4 57 2.4 :
MA = 3.5 .y 357 .y 5.7.9
NA = 357 e “3.5.7.9 ete.
A*A = 3:5:7:9 etc.
etc.
But because itis S = H%' it will be
ds 1 dds 1 d®s 1
Tx  (A+x2 1242 (+x7 12303  (txf &
Hence, having substituted these values, the form will become
_ 1 + 2x + 2 - 4x? + 2-4-6x° + ete.
1+x 3(1+x)2 3-5(1+x)3 3-5-7(1+x)*

having substituted x = yy again and multiplied by vy it will be

12



U 213 2-4y° N 2-4-6y7
14+yy 31 +yy)? 3-5(1+yy)® 3-5-7(1+yy)

Y = arctany = 1 Tetc

§31 One can also transform the above series expressing the arc of a circle in
another way by comparing it to the logarithmic series.

For, let us consider the series

3 4 P

z=1-2+2_2 4% T Lok
B 35 7 9 1 7
which we want to compare to this one
1 x xx 20 xt 1 1
=-——Z-+———+ - —etc. = - —-In(1
=0 271 6 s feTg 0T

and the values of the letters A, B, C, D etc. will be

- 3 5 7’ 9 '
2 12 12 12
AA = < il il il .
3’ 3.5 5.7 7.9 ete
2.4 2.4 2.4
A2A = = - .
3.5’ 3.5.7 5.7.9 etc
2.4.6
ASA = .
3.5.7 etc
etc

Further, because itis S = § —  In(1 + x), it will be

a1 ads 1
ldx — 2(1+x)" 1-2dx2  4(1+x)?’
d*S 1 d*s 1

= — ; = t
1-2-3dx  6(1+x)3 1-2-3-4dx* 8(1+x3

Therefore, it will be SA = D% = 1 and from the remaining terms it will be

X B 2xx B 2-4x3
31+x) 3-5(1+x)?2 3-5-7(1+4x)3

Z=1- — etc.

13



Now, let us put x = yy and multiply by y; it will be

]/3 2]/2 2. 4]/7

A+yy) 350+yw? 3.5 70+yp

Y = arctany =y — 3
This transformation will therefore not be obstructed by the infinite term §
which entered the series S. But if there remains any doubt, just expand the
single terms except for the first into power series in y and one will discover
that indeed the series first propounded results.

§32 Up to this point we considered only series of such a kind in which all
powers of the variable occurred. Now, we want therefore proceed to other
series which in the single terms contain the same power of the variable of
which kind this series is
1 1 1 1
ST utx Thrx Towx Ty T

For, if the sum S of this series was known and is expressed by a certain
function of x, by differentiating and by dividing by —dx it will be

5_ 1 oo e

dx  (a+x)?2 (b+x)? (c+x)?2  (d+x)2 ’
If this series is differentiated again and divided by —2dx, one will recognize
the series of the cubes

dds _ 1, 1 1 1
2dx2 (a+x)3  (b+x)3  (c+x)®  (d+x)

and this series differentiated again and divided by —3dx will give

3 + etc.

-d*s 1 n 1 n 1 n 1

dx3  (a+x)* (b+x)*  (c+x)*  (d+x)
And in the same way, the sum of all following powers will be found, if the
sum of the first series was known.

n + etc.

§33 But we found series of fractions of this kind involving an undetermi-
ned quantity above in the Introductio, where we showed, if the half of the
circumference of the circle, whose radius is = 1, is set = 7, that it will be

14



T 1 1 1 1 1
nsin%n_E+n—m_n+m_2n—m+2n+m Bn—m o
7T COS 7T _ 1 1 11 n 1 1 + etc
nsin 77t m n—m n4+m 2n—m 2n+m 3n—m '

Therefore, because it is possible to assume any arbitrary numbers for m and
n, let us set n = 1 and m = x that we obtain a series similar to that one we
had propounded in the preceding paragraph; having done this it will be

s 1 1 1 1 1
sinnx:§+1—x_l+x_2—x 2—|—x+3—x_etc'
7T COS 7T 1 1 1 1 1 1
sin 7Tx :E_1—x+1+x_2—x+2+x_3—x+e’CC

Therefore, one will be able to exhibit the sums of any powers of fractions
resulting from these fractions by means of differentiations.

§34 Let us consider the first series and for the sake of brevity put Sin”nx =5,
whose higher differentials shall be taken having put dx constant, and it will
be

S = 1 ! — L - ! L + L — etc.

X 1—x 1+x 2—x 2+x 3—x

—dSs 1 1 1 1 1 1
I o (-2 12t e—x2t Bz Boxz

dds 1 1 1 1 1 1
Y R R G WP R S R P R S

—d3s 1 1 1 1 1 1
A (T (T A CE T N CE T

d*s 1 1 1 1 1 1
Ulx 0 (A-xpF (+x8 2—xp Brap B_xp ©©

—d°S 1 1 1 1 1 1
208x ¥ (—-xF (+x° 2=xF B+xp (B-xp

etc.

15



where it is to be noted that in the even powers the signs follow the same law
and in like manner in the odd the same structure of the signs is observed.

Therefore, the sums of all these series are found from the differentials of the

expression § = .

§35 To express this differentials in a simpler way let us put

sint=p and cosw=g;

it will be

dp = mdxcosmx = mqdx and dq = —mpdx.

Therefore, because itis S = %, it will be

—dS g

dx — pp

dds _ (PP : 299) _ m(q9+1) o _

2 3 because itis pp+qq =1
—d3S ™ (4% + 59)

dx3 P

a's 5 24q 28q _ (g +187° +5)

dxt p° Ty p°
—d°S _ 6 120q5 180q AN 7% (g° + 58¢° + 619)
dx5 P6 4 pp }96

d°s . 720q 1320q 6629> 61 77 (g% +179g* + 4794% + 61)

dx® Poop r’
—d’s 5040 10920 7266q° 1385

s :ﬂ8< q q+ P4q+ p2q>
or

8
= Zs(tf + 543¢° + 31114° + 1385¢)

s 9 <40320q8 . 1008004° . 836644 N 245684> . 1385)
dx8 p° p’ p° p? p

16



or

9
= 7;9(q8 + 16364° + 182704 + 190284% + 1385)

etc.

These expressions are easily continued arbitrarily far; for, if it was

ars 1 lan ’Bqan ,an74 5qn76
e = ot <pn+1 T pn=1 T pn=3 - pn=5 Tete ),

then its differential, having changed the signs, will be

n+1 3

T (et (n— 1)5)q;_1 F(n-2)pt (-3 T

n

q
1
dn+15 (Tl + )“P

dxn+1 n—5
+((n—4)y + (n—5)5) g

n—+2

=

+ etc.

§36 Therefore, from these series one will obtain the following sums of the
series exhibited in § 34

1
7.[3
24dx2 2
—d%s ! <
6dx3 6
d*s 7 284> 5
240~ 24 "+ P p>
7T

@S _ m® (1207, 1804° | 6lg
120dx5 ~ 120 pe p* p?

17



s <720q6 13204* 66247 61>

720dx6 — 720 \ p7 p° & p

-d’s <5O40q7 109204° | 72664" 1385q>

720dx® 5040 P8 Pt p* p?

#s (40320q8 100800° , 83664q* | 24568¢° | 1385>
40320dx% 40320 p° p’ p° p3 p

etc.

§37 Let us treat the other series found above [§ 33] in the same way

mmcosmtx 1 1 1 1 1
sintx  x 1-x  14+x 2—x 2—i—x_3—x+etc'
and having put ©227% = T for the sake of brevity the following summations
will result
T = 1 ! =+ ! - ! =+ LI etc.
x 1—x 1+x 2—x 2+x
—dT 1 1 1 1 1
x =2t (1—x)? + (14 x)? + (2 —x)? + (24 x)? et
ddT 1 1 1 1 1
287 B (A—xp T Ut2P @=xp T 2gap €
—PT 1 1 1 1 1
AT D T
‘T 1 1 1 1 1
it B (U—xp Utxp @2-xp T 2tap o€
—d°T 1 1 1 1 1
208x % (1—x)°6 + (1+x)° * (2 —x)° + (24 x)° Hete
etc,,

where in the even powers all terms are positive, but in the odd powers the
signs + and — alternate.

§38 To find the values of these differentials let us, as before, put

sintx =p and dg = —mpdx

that it is pp + qq = 1; it will be

18



dp = mqdx and dgq = —mpdx.

Having added these values it will be

T=rt- Z
_ 2
aT = 2 <W+1> =T
dx pp pp
ddT 5 <2q3 2q> 2713
- =77 — + — =
dx2 P3 p p3
T _ <6q4 849 ) 4 <6qq 2 )
=rt| S+ +2) =t +—
dx pt o opp 2
#T g (24 16q
dx4 PS PB
—d°T  ,(120g* 12099 =16
i~ < oo +PP>
T, <720q5 9604° 272q>
=7 + +
dx6 p7 P’ P’
~d’T _ 5 (5040¢° N 84004* N 3696q> | 272
dx7 P8 pb 7 P2
8T 5 (4032047 8064045 48384¢°  7936q
e P T o7 T 5 T PE

etc.

These formulas can easily be continued arbitrarily far. For, if it is

LT (g BT g
dxn pn+1 pnfl pn—3

qn—7
+ s —|—etc.> ,

the expression for the following differential will be

AT ((n+Dag” (=D (a+p)g"  (n—=3)(B+7)g" "
;:dxn+1 ==ﬂ'+' ( pn+2 + pn + pn72 +—eh:>

§39 Therefore, having put sin 7rx = p and cos 7tx = g, the series of powers
given in § 37 will have the following sums
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T=r- Z
—dT _ 51
dx ﬁ
adT  5¢q
2dx2 s
—d’T 4 (99 1
6dd <7r4 " ?»pp)
—d*'T (¢ 2
it =" <p5 + 3,,0)
—d°T ¢ (q*  3qq 2
1204 " \ps T T 1spp
T _ (¢ 4 17
720dx6 p’  3p>  45p3
—d’T g (g% 5t 1147 17
5040dx” <ps T 356 T 15,2 315pp>
BT (7 e e e
40320dx8 p?  3p7  5p>  315p3
etc.

§40 Except for these series we found several others in the Introductio from
which in like manner others can be derived by means of differentiation.

For, we showed that it is
1 /X 1 1 1 1 1

- = tc.
2x  2xtan7y/x 1—x+4—x+9—x—1_16—x+25—x+eC

Let us put that the sum of this series is = S that it is

1w cosmyx,
S 2x 2y/x sinmy/x’

it will be

ds 1 T cosT\/X T

dx - 2x T 4x\/x sinmy/x * 4x(sin 7t4/x)?’
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which expression therefore yields the sum of this series

1 1 1 1 1
tc.
A2t a2 T o2 T ae—n2 " 5=z '€
Further, we also showed that it is
ro oAl 1 1 1 11
2x i1 2x l1+4+x 4+x 9+x 16+«x '
Therefore, if this sum is put = S, it will be
45 _ ! + ! + ! + ! + etc
dx  (1+x)2  (4+x)2 (9+x)? (16+x)? ’
But it is
ds -t AWVr41l an g2V 1

dx  da/x @nwEio1 x (@wE_1)2 | 2ax

Therefore, the sum of this series will be

—ds T WYyl am e2TVx 1

dx :4x\/i.32”\/§—1+ x .(62”\/5—1)2_@'

And in like manner the sums of the following powers will be found by means

of further differentiation.

§41 If the value of a certain product composed of factors involving the
undetermined letter x was known, one will be able to find innumerable
summable series from it by means of the same method. For, let the value of

this product

(1+ax)(14 Bx)(1 4 yx) (1 + ox)(1 + ex)etc.

be = S, a function of x, of course; by taking logarithms it will be

InS =1In(1 + ax) + In(1 + Bx) + In(1 + yx) + In(1 + dx) + etc.

Now, take the differentials; after division by dx it will be

as  « n B I S
Sdx 1+ax 1+Bx 1+9x 1+6x

+ etc,,
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from the further differentiation of which the sums of any powers of these
fractions will be found, precisely as we explained it in more detail in the
preceding examples.

§42 But, in the Introductio we exhibited several expressions of such a kind
we want to apply this method to. If 77 is the arc of 180° of the circle whose
radius is = 1, we showed that it is

mrt mm 4nn —mm lénn —mm 26nn — mm

oy T 4dnn 16nn 36nn etc.
mrr  nn—mm 9nn—mm 25nn —mm 49nn — mm
OSon T nn 9an 25nm 49nn etc.
Let us put n = 1 and m = 2x that it is
Sin 7Tx — 7T 1—xx‘4—xx . 9 —xx . 16 — xx ot

1 4 9 16
or

1—x 1+x 2—x 24x 3—x 3+x 4—x

i = . tc.
sin 7tx = 7Tx I 1 > 5 3 3 1 etc
and
T — 1—4xx 9—4xx 25—4xx 49 —4xx -
coSTr =" 9 25 49 ‘
or
1—-2x 1+4+2x 3—2x 3+2x 5—2x 542«
COS 7TX = . . . . . . etc.

1 1 3 3 5 5
Therefore, from these expressions, if one takes logarithms, it will be

1-— 1 2 — 2 —
Insinztx = Intx + In 1x—|—ln —;x—kln 2x+ln —;x—i—lnB?’x—i—etc.
1-2 1+2 -2 2 -2
Incostx = In 7 x—l—ln +1 x—l—ln3 3 x+ln3—g x—l—lnSTx—l—etc.
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§43 Now, let us take the differentials of these series of logarithms and having
divided by dx everywhere the first series will give
meosmtx 11 n 1 1 n 1 1 + et
sintx  x l1—-x 1+x 2—-x 2+x 3—x '
which is the series we treated in § 37. The other series on the other hand will
give

—nsintxy 2 + 22 n 2 + et
cosmx  1—-2x 1+42x 3-—2x 3+2x 5-2x '
Let us put 2x = z that it is x = 5 and divide by —2; it will be
7 sin 27tz 1 1 1 1 1
= + + —etc.

Zcos%nz_l—z_l—i-z 3—2_3-1-2 5—2z

But because it is

sinlnz— 71_@87[2 and coslnz— 71+COS7TZ
277 2 2T 2 ’

it will be

7ty/1 — cos 7tz 2 2 2 2
V14 cosmz :1—2_1+z+3—z 5—z
or by writing x instead of z it will be
m/l—cosnx: 2 B 2 n 2 B 2 n 2 ot
/1 + cos rtx 1-x 14+4x 3—x 34+x b5—x ’
Add this series to the one found first

mecostx 1 1 1 1 1

1
—- — _ — — tc.
sin 7Tx x 1—x 1+x 2—x+2+x 3_x—i—ec

and one will find the sum of this series

1 1 1 1 1 1

;+1—x_1+x_2—x+2+x+3—x_3+x

_ 1/ 1—cos mx 7T COS TTX : . v/ 1—cos x
to be = Vircosn T sinmx - But this fraction VFcosmx
denominator are multiplied by v/1 — cos 7tx, goes over into 175‘]33727”‘ Therefore,

the sum of the series will be = 47—, which is the series we had in § 34;

therefore, we will not prosecute this any further.

— etc.

, if the numerator and
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